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ABSTRACT
The immune system plays an essential role in the protection, repair, and healing of most tissues, although the
central nervous system (CNS) does not have a classical exchange with the immune system. Preservating the
integrity of the CNS is a complex and harmonizing act in which the immune system is involved. Although the
immune response against CNS antigens has been considered deleterious, there are indications that the failure
of the CNS to achieve a functional renewal after an injury is a consequence of an ineffective relation between
the damaged tissue and the immune system. A disastrous effect of an injury to the CNS is that the primary insult
triggers a self-destructive process of contiguous neurons, which were undamaged by the initial injury. The im-
mune system recognizes the injury-associated-self compound as potentially damaging. Accordingly it elicits a
protective anti-self response mediated by T cells that are specific to self-antigens. Thus, autoimmunity in the
CNS may not always be detrimental, but could, under certain conditions, have a physiological role in protecting
the damaged tissue. Beneficial autoimmunity is functionally discernible from autoimmune diseases and may
even function as a protective mechanism. The immune system can be activated to cope with tissue damage,
without the risk of autoimmune disease induction, rather than dealing exclusively with the danger associated
with pathogens. A comprehensive understanding of the protective autoimmunity process will be instrumental in
the generation of novel therapeutic approaches and for alternative therapeutic tools that will certainly meet
vacant medical niches.
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RESUMEN
Autoinmunidad neuroprotectiva: Re-análisis de las aproximaciones terapéuticas actuales y de las
perspectivas futuras. El sistema inmune (SI) tiene una función importante en la protección y cicatrización de la
mayoría de los tejidos. Aunque el sistema nervioso central (SNC) ha sido considerado como un sitio
inmunológicamente privilegiado porque en el no se evidencia una relación clásica con el sistema inmune, la
preservación de su integridad requiere la participación del mismo. La respuesta inmune dirigida contra los tejidos
del SNC ha sido considerada deletérea, sin embargo numerosas evidencias indican que el fallo del sistema
nervioso en lograr una recuperación funcional después de una lesión, se debe a una relación torpida entre el tejido
dañado y el sistema inmune. Las lesiones primarias en el SNC generan un proceso de degeneración que afecta a
neuronas no involucradas en el insulto primario. El sistema inmune reconoce moléculas derivadas del daño y en
consecuencia activa una respuesta protectora mediada por células T, antígeno específica. La respuesta autoinmune
en el SNC no solo implica una reacción perjudicial, sino que bajo determinadas circunstancias es una respuesta
fisiológica dirigida a proteger el tejido dañado. La autoinmunidad fisiológica es funcionalmente discernible de las
enfermedades autoinmunes y funciona como un mecanismo de protección por ser auto-limitada. El sistema inmune
no solo se activa ante la invasión de microorganismos patógenos, sino que puede ser activado para ayudar a
reparar el tejido dañado, sin el riesgo de inducir autoinmunidad patológica que por naturaleza se amplifica y
perpetúa. Una correcta interpretación de los procesos biológicos asociados a autoinmunidad neuroprotectiva o
fisiológica, contribuiría a la generación de aproximaciones y herramientas terapéuticas novedosas en el área de la
neuroprotección y neurorestauración, donde lamentablemente existe un enorme vacío terapéutico.

Palabras clave: autoinmunidad fisiológica, autoinmunidad neuroprotectiva,
neuroprotección, neuroregeneración

Introduction
Autoimmunity has been currently defined as a direct
destructive attack of the immune system against body
tissues. However, the observations of a high proportion
of autoimmune T cells found in healthy individuals
and the fact that there is no correlation between disease
severity and the number of autoimmune T cells [1-3]
have demonstrated the inconsistency of this definition.

Protective autoimmunity is a new concept in the
context of the Central Nervous System (CNS) repair,
it is also a physiological response elicited by an alarming
situation on the CNS. The response is beneficial but, if
its operation is impaired, it can lead to an autoimmune
disease. According to this view “Tolerance to Self” is
considered, not as a state of non-responsiveness but,

1. Burns J, Rosenzweig A, Zweiman B,
Lisak RP. Isolation of myelin basic protein-
reactive T-cell lines from normal human
blood. Cell Immunol (1983); 81(2):435-40.
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rather, as an ability to tolerate an autoimmune response
to self-antigens without developing an autoimmune
disease [4]. Consequently, autoimmune diseases may
be viewed as a by-product of the malfunctioning of a
physiological autoimmune response [5].

The finding that an autoimmune response can be
beneficial implies that natural autoimmune T cells
may have undergone positive selection at some stage
in the ontogeny, as proposed by the theory of the
“immunological homunculus” formulated by Irun
Cohen [6]. Cohen states that these cells are not just a
failure resulting from the escape of a negative T cell
selection when identifying self-antigens; but rather,
in healthy individuals the existence of autoimmune T
cells has a biological significance in a “stand by”
status, or promptness for protective action when
required. Based on these studies, for neuroprotection
the immune system must be instructed to drive
inflammation as an internal repair mechanism, in an
attempt to halt damage spreading.

Cellular mechanism of autoimmune-
cell-mediated neuroprotection
Neurotrophins are a protein family that includes the
Nerve Growth Factor (NGF), Brain-derived Nerve
Growth Factor (BDNF), Neurotrophin 3 (NT 3) and
Neurotrophin 4/5 (NT 4/5) [7]. Although they have
been exhaustively characterized in terms of neural
development, solid evidence demonstrates that neu-
rotrophins also act on injured and degenerative nerve
cells, indicating that they have a role in the response
of neurons to traumatic or degenerative processes [8].
The Leukemia Inhibitory Factor (LIF), is a neuropoie-
tic cytokine that is supplied by both resident CNS
cells and infiltrating immune cells. It may also con-
tribute to the neuroprotective effects of autoreactive
T cells [9-11].

Additionally it has been demonstrated that some
neurotrophins are produced and act in the immune
system, with autocrine and paracrine mechanisms, and
they therefore sustain a bidirectional dialog between
the nervous system and the immune system [12].

The neuroprotective effect of autoimmune T cells
is mediated by the release of neurotrophic factors [13].
Moreover other immune cells such as B-cells and
macrophages also produce BDNF [14].

T cells upon activation, regardless of their antigenic
specificity, produce neurotrophins, [15, 16]. Nerve
growth factors play an important role in growth,
differentiation, survival and regeneration of neurons
after CNS damage [16-19], and they have an
immunomodulatory effect on immune response and
inflammation [20-22]. The secretion of neurotrophins
by this T cells is antigen dependent [16, 23].

Another favorable effect of the accumulated auto-
immune T cells, once activated, is the modulation of
the local glial response to harmful conditions [24, 25],
supporting the innate immune system in effectively
clearing the tissue of dead cells and debris [16].

Unfortunately, it appears that neurotrophins se-
creted by immune cells under physiological conditions
are not enough to avoid damage, and it is essential to
find therapeutical approaches to develop the homing
properties of the immune cells for targeting neuro-
trophins into the CNS.

Neuroprotective autoimmunity
is determined by a genetically
encoded autoimmune response
Neuroprotective autoimmunity is a rigorously regu-
lated mechanism of tissue repair, which leads to an
autoimmune disease only when the regulatory me-
chanisms are malfunctioning or absent [26]. There is a
relation between the rate of neuronal survival after
CNS damage and the resistance to autoimmune disea-
se development. This relation is mediated by an injury-
induced beneficial T cell response found only in
genetically resistant animals, suggesting that the
protective T-cell-dependent response and resistance
to an autoimmune disease are regulated by a common
mechanism [27].

The recovery from optic nerve injury in several strains
of rats and mice with different predispositions to diffe-
rentially predisposed to Experimental Autoimmune
Encephalitis (EAE) induction, demonstrated that sus-
ceptible animals have a limited spontaneous ability
to express a protective autoimmune response to CNS
injury. In these susceptible animals the rate of post-
injury neuronal survival was lower than in animals
resistant to EAE [27].

In optic nerve injury experiments using adult Lewis
rats, thimectomized at birth and therefore lacking
endogenous T cells (including regulatory T cells), it
was found that the adoptive transfer with T cells that
are specific to the myelin antigen did not protect the
damaged nerve. This suggests that protective
autoimmunity includes both auto-reactive T cells and
regulatory T cells, it also explains the correlation
between beneficial autoimmunity and resistance to
EAE [16, 28].

The same T-cells can either be beneficial or de-
trimental to neurons, depending on the regulatory
environment and tissue context. T cells might be both
potentially protective and potentially destructive and
their expression depends on how they are regulated.
Therefore, the ability to protect neuronal tissue appa-
rently does not correspond to a lack of autoimmunity;
instead, it reflects a well controlled autoimmunity [29].

These findings give relevant information on be-
neficial autoimmunity, which only appears to be
expressed by individuals with a genetic background
determining resistance to autoimmune diseases; thus,
the result of identical CNS damage will diverge in
individuals who differ in their susceptibility to auto-
immunity. Resistance or susceptibility, in terms of the
development of autoimmune diseases after active im-
munization with self-antigens, is related to the existence
and functioning of regulatory T-cells. Regulatory cells
help sustain a balance between the ability to express
an autoimmune response, required for neuroprotection,
and the need to prevent autoimmune diseases [30].
Individuals with a limited ability to regulate the
autoimmune response are often unable to benefit from
protective autoimmunity [29, 31, 32]

The genetically determined predisposition to au-
toimmune diseases seems to be essential not only for
predicting an increase in damage after CNS injury,
but also for scheduling personalized therapy, because
treatments that are appropriate to resistant individuals
might not be applicable to susceptible persons.
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Neuroprotective autoimmunity is a
physiological response to both CNS
trauma and neurodegenerative
disorders
A self-propagating process of secondary degenera-
tion, of initially undamaged neurons, often follows
traumatic or degenerative damage produced by inju-
ry to the CNS. The role of protective autoimmunity
that evolves under non-infectious conditions (as in
these cases) probably arrests progressive degeneration
[27, 33].

The traumatic and neurodegenerative event at the
CNS sends a stress signal to the immune system, to
help the damaged nerve cope with the hazard of pro-
gressive degeneration. After a harmful event, the CNS
spontaneously evokes a beneficial T cell-dependent
immune response that reduces the spread of the injury-
induced damage and conversely, the recovery is worse
in the absence of T-cells [26, 27, 33, 34].

The evidence supporting a protective autoimmu-
nity after CNS injury was found during studies on
the response to CNS insults; it was discovered that
the immune system provides protection against a
self-destructive process. Experiments in rats using
a partial crush injury of the optic nerve, followed by
the adoptive transfer with myelin-specific T cells,
demonstrated that the number of surviving neurons
and fibers was significantly higher in rats treated with
myelin specific T-cells than in those treated with T
cells specific to an irrelevant antigen, or not treated
at all [35]. The ability of autoimmune T cells to
diminish the post-traumatic neuronal failure was
confirmed both morphological and functionally in
experimental models of axonal trauma of the optic
nerve and spinal cord [35-38].

In an animal model of optic nerve injury, the sur-
viving neurons are significantly higher if preceded
by spinal cord injury, as compared to animals without
a previous contusion. Here the neuroprotective res-
ponse is detectable by the improved recovery after a
subsequent CNS lesion at another site; moreover the
neuroprotective effect can be successfully transferred
to recipient rats by splenocytes activated ex vivo with
myelin basic protein. In contrast, adult rats thimec-
tomized at birth and therefore devoid of mature T
cells, lack endogenous protective autoimmunity,
indicating that protective autoimmunity is not induced
by experimental or therapeutical interventions but it
is a physiological response to CNS injury [33].

On the other hand, neonatally induced tolerance to
myelin antigens significantly reduces the ability of
adult rats to resist axonal injury, indicating that the
spontaneous T-cell dependent protection, evoked as
a reaction to wounds of myelinated axons, is myelin
specific [30, 39]. The discovery of neuroprotection
in transgenic mice over-expressing a T cell receptor
for myelin basic protein peptides, but not in mice
overexpressing a T cell receptor for ovoalbumin
peptides, also supports the concept that antigenic
specificity is essential for neuroprotection [33].

These T cell-dependent neuroprotective respon-
ses, although beneficial if stringently regulated, may
not be sufficiently effective, as a result of the immune-
privileged character of the CNS [40, 41].

Due to the impairment of neurogenesis, the poor
regeneration ability of injured axons and the destructive
series of injury-induced events that result in the lateral
and longitudinal spread of the damage to neurons that
escaped the direct initial damage, the injury to CNS
often produces an irreversible functional deficit [42].
The impracticality of CNS regeneration can be over-
ridden with a clear interpretation of the contribution of
the immune system during the recovery process after
CNS injury, which leads to a new therapeutic approach;
this would take into consideration that immunization
with CNS-related antigens leads to a more effective
management of immune cells for therapy and perhaps
for disease healing, driving the inflammatory reaction
towards a beneficial, rather than a harmful situation.

It is also essential to consider the rationality and
application scheme of anti-inflammatory or immuno-
suppressor compounds after injury, since, although
they may appear to have a beneficial effect [43-46]
they may be ineffective and possibly detrimental in
terms of neuroregeneration [47-51].

Neuroprotective autoimmunity
is elicited during CNS stress
mediated by glutamate toxicity
Glutamate is an essential neurotransmitter in the CNS.
Synaptic activity induces a transient local increase in
glutamate concentrations in the synaptic cleft, but
the transporter mediated uptake restores glutamate
homeostasis [52, 53]. During CNS stress, significant
alterations in glutamate concentrations make it toxic
to the point of self destruction [54-58].

The excessive amount of glutamate in situ during
CNS stress is a sign of the body recruiting help from
the peripheral immune system in the form of T cells
specific to immunodominant antigens that reside at
the site of the glutamate-induced stress [29]. A
systemic immune response can thus assist the over-
burdened local coping mechanisms of the CNS. The
inflammatory immune response in CNS is accompa-
nied by the activity of macrophages and microglia
cells, which play an active role in brain pathology by
releasing glutamate [59]. However, both cells have
also been shown to express glutamate transporters
and take up glutamate [60-62], thereby apparently
contributing to protection against glutamate toxicity.
Moreover, activation of macrophages and microglia
can result in a phenotype that may or may not main-
tain a dialog with adaptive immunity. The former
phenotype is associated with the expression of the
major histocompatibility complex class II proteins
(MHC-II); the latter is associated with little or no
expression at all, and cannot derive any benefit from
the adaptive immune response [4].

A particular attribute of protective autoimmunity
is that antigen specificity is required for targeting the
T cells to the stress site. The recruitment of T cells,
including T helper 1and 2 (Th 1 and Th 2, respective-
ly) cells that are targeted at specific antigens residing
at the lesion site, leads to a further activation of mi-
croglia cells, with a resulting increase in the secretion
of interferon gamma. Interferon gamma can affect the
number of glutamate receptors expressed by astro-
cytes as well as by microglia, re-moving the toxicity
endangering the tissue [63-65]. So, resident microglia
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have a dual function, as antigen-presenting cells and
as cells that clear the damaged site of potentially har-
mful material [4, 66].

On the other hand, it has been demonstrated in the
animal model for optic nerve injury, where glutamate
is injected into the vitreous humor of mice, that the
myelin proteins and peptides fail to boost the T-cells
dependent protection, [29, 67]; in contrast vaccination
with antigens that are immunodominant at the eyes
led to significant protection [29, 68, 69]. It strongly
suggests that a peptide that boosts beneficial autoim-
munity resides at the site of the stress and is derived
from a protein that is also potentially capable of in-
ducing an autoimmune disease at that same site. This
suggestion is supported by the strong evidence in the
case of uveitis, where the tissue-specific self pathogen
is the same protective self antigen [29].

Therapeutic vaccination that boosts a physiological
mechanism for the regulation of glutamate might prove
to be a possible strategy for the therapeutic protection
against glutamate-associated neurodegenerative or
mental disorder.

Neuroprotective autoimmunity
in demyelinating diseases
The pathogenic role of autoreactive T-cells recognizing
CNS antigens in both multiple sclerosis and its animal
model EAE), has centered the attention of research
and consequently much effort has been given to
emergent multiple sclerosis therapies in order to
abrogate auto-immune T cells or shift the balance from
presumed pathogenic Th1 to the assumed beneficial
Th2 pheno-type of T cells.

However, clinical observations primarily associated
to the “clinical radiological paradoxes”, as well as ex-
perimental evidence specifies that the suppression of
deviated immune response may be an inappropriately
simplistic method. Some of these irrefutable clinical
and experimental observations are listed below:

- Multiple sclerosis inflammatory lesions do not
predict later changes in impairment or disability [70].

- In both primary progressive and secondary pro-
gressive clinical forms of multiple sclerosis, associated
with increasing disability, there have been less in-
flammatory changes than in the relapsing-remitting
disease [71].

- Currently available immunomodulatory and immu-
nosuppressive treatments of multiple sclerosis have
a much more pronounced effect on inflammatory acti-
vity than on the clinical disease [71]. The non-selective
immunosuppressive treatment often fails to have a
realistic clinical benefit [72, 73]; suppressive therapy
may fail when the beneficial effect on the inflammato-
ry reaction prevails over its negative consequences [8].

- Lymphocytes of multiple sclerosis patients have
an increased amount of BDNF transcripts, indicating
that autoimmune T cells have beneficial effects on
neural tissue [74]. The endogenous expression of
neurotrophins in early multiple sclerosis lesions is
greater than that of the older chronic multiple sclerosis
plaque. This finding explains the ongoing axonal
degeneration in these plaques in the chronic progres-
sive stage of the disease [8].

- In animal models after a crush injury of the optic
nerve or contusion of the spinal cord, activated T-cells

that are specific for the basic myelin protein (but not
against non-CNS antigens) protect the injured nervous
system tissue from secondary degeneration and
promote its repair [35]. This neuroprotective effect is
mediated by the release of neurotrophic factors from
autoimmune T-cells, while B cells and macrophages
produce neurotrophic factors as well [13, 14, 75].

- In multiple sclerosis lesions, detailed immunohis-
tochemical analyses have shown the presence of BDNF
and its receptor, suggesting a role for this neurotrophin
in multiple sclerosis physiopathology [76].

All the clinical and experimental evidence sustains
the hypothesis of “a double role” of the immune
system in demyelinating diseases, highlighting the
favorable effects of inflammation. The concept of
neuroprotective autoimmunity will have important
consequences for the pathogenesis and treatment of
multiple sclerosis, because it is necessary to combi-
ne neuroprotective and immunomodulatory agents,
preserving the endogenous protective potential of in-
flammation. Unfortunately, in multiple sclerosis it is
not clear whether there is a phase of the disease in
which the inflammatory response is more favorable
than dangerous [8].

CNS-antigens vaccination protocols:
Therapeutic challenge
After the injury to the CNS, therapeutic vaccination
may guarantee the immediate recruitment of immu-
nocompetent cells making it possible to protect the
in-dividual from the pathological consequences of
the damage. Active vaccination may be a way of pro-
tecting individuals from the devastating effects of
secondary degeneration, because unlike antibody
response, the response of T cells to immunization
with a suitable antigen starts within the time period
required for a neu-roprotective effect, whereas
antibody production takes longer [77]. As the vacci-
nation is designed to protect the individual from in-
sultinduced endogenous toxicity, the antigen will be
a self-protein and the immune reaction is therefore
an autoimmune response [16].

The choice of antigens for therapeutic vaccination
should be based on safety considerations, ensuring
that it promotes neuroprotection without inducing an
autoimmune disease. Vaccination with non-pathoge-
nic peptides, such as those derived from myelin basic
protein or synthetic polymers that cross-react with
self-proteins, have shown better motor recovery wi-
thout autoimmune disease development in spinally
injured rats [31, 77] and in experimental models
of chronic injuries of the optic nerve [67, 78, 79].
Vaccination with altered encephalitogenic peptides in
treating CNS injury or neurodegenerative disorders
offer an approach with the potential advantage of
avoiding the risk of developing an autoimmune disease
[67, 78, 79]. This type of therapeutical approach is
also beneficial in that it stimulates a physiological
mechanism that is evoked by the insult, but at a level
that is too low to be completely effective [16].

Conclusions
The criteria on the uselessness of CNS regeneration
can be revoked if we are able to understand the con-
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